

Regain Services Pty Ltd

Capacity Increase at Tomago Spent Potlining Facility Hazard and Operability Study (HAZOP) Report 40,000 tpa Capacity Thermal Treatment Plant

DATE: 17 JANUARY 2020 REGAIN DOC NO.: 246R005

Bureau Veritas AIRS Pty Ltd

Unit 3, Williamstown Rd, Port Melbourne VIC 3207 Telephone 61 3 9922 0700 Facsimile 61 3 9922 0701 www.bureauveritas.com.au

© 2020 Bureau Veritas AIRS Pty Ltd

Document: 246R005

This report has been prepared for use by, and is confidential to Regain Services Pty Ltd for the specific purpose to which it refers. No responsibility is accepted to any third party. This report is copyright, and neither the whole nor any part of this report or the information contained in it may be published or disclosed to third parties without prior written approval of Regain Services Pty Ltd.

DOCUMENT REVISION STATUS								
REV	DESCRIPTION AUTHOR DATE							
А	Issued to Client for Review	M Wallace	9 Dec 2019					
0	Issued for Use	M Wallace	17 Jan 2020					

Contents

ABBRE	VIATIONS	4
1	INTRODUCTION	5
1.1	Background	5
1.2	Description of the Facility	5
1.3	Scope	6
1.4	Objectives	6
2	STUDY TEAM	7
3	WORKSHOP DELIVERY	8
3.1	Hazop Methodology	8
4	FINDINGS AND RECOMMENDATIONS1	1
5	REFERENCES1	2
ATTAC	HMENTS1	3

Attachment 1 Summary of Nodes Attachment 2 Study Team Attendance Sheet Attachment 3 Hazop Worksheets Attachment 4 Recommendations

Capacity Increase at Tomago Spent Potlining Facility Hazard and Operability Study (HAZOP) Report 40,000 tpa Capacity Thermal Treatment Plant

ABBREVIATIONS

ALARP	As Low As Reasonably Practicable
AS	Australian Standard
BMS	Burner Management System
BV	Bureau Veritas
CH ₄	Methane
FS	Flow Switch
FT	Flow Transmitter
H ₂	Hydrogen
Hazop	Hazard and Operability (Study)
LS	Level Switch
LT	Level Transmitter
P&ID	Piping and Instrumentation Diagram
PM	Preventative Maintenance
PT	Pressure Transmitter
Regain	Regain Services Pty Ltd
SPL	Spent Pot Liner
TIC	Temperature Indicating Controller
tpa	tonnes per annum
TT	Temperature Transmitter
TTP	Thermal Treatment Plant
TTP2	Stage 2 Thermal Treatment Plant

1 INTRODUCTION

1.1 Background

Regain Services Pty Ltd (Regain) is currently in the design phase of its second Thermal Treatment Plant (TTP2) at the Tomago Aluminium Smelter Spent Potlining (SPL) facility in New South Wales. The new TTP2 is in addition at the existing TTP in operation at the Tomago facility.

An Environmental Assessment which included a gap analysis of a previously performed Preliminary Hazard Analysis was submitted prior to the Project Approval: MP 06_0050 MOD 2 – Increase the processing capacity of SPL from 20,000 tonnes per year to 60,000 tonnes per year and the installation and operation of an additional thermal treatment plant (MOD 2). The consent conditions for MOD 2 required that the following study reports be submitted for approval:

- Hazard and Operability Study;
- Construction Safety Study;
- Emergency Plan; and
- Safety Management System documentation.

Bureau Veritas (BV) has been requested by Regain to facilitate and document a hazard an operability study (Hazop) based on the current design.

This report details the methodology, workshop attendance, findings and recommendations of the Hazop based on the current design of TTP2.

1.2 Description of the Facility

The main plant items of the facility are a rotary kiln and hydrolysis reactor with associated gas handling, dust filtration and materials handling equipment.

The process function of the TTP2 is to eliminate hazards in SPL being cyanide and the propensity of certain constituents of SPL to react with water and generate flammable gases. Crushed SPL is fed to the rotary kiln where it is heated to nominally 600 degrees Celsius to destroy cyanide. The kiln is heated with a natural gas burner system. The temperature of the material in the kiln is controlled with a temperature indicator and controller (TIC).

The heated SPL discharges from the rotary kiln to the hydrolysis reactor where the SPL is mixed with water. The water reacts with the SPL producing reaction gases of ammonia, hydrogen and methane. The hydrolysis reaction gas are immediately transferred to the rotary

kiln burning zone where the hydrogen and methane are burned with the natural gas fuel in the kiln. A portion of the water is converted to steam as it cools the SPL to a safe temperature prior to discharge from the reactor. The steam is also transferred to the rotary kiln. The reactor operates near atmospheric pressure.

Gases of combustion and steam are drawn through the rotary kiln through a baghouse dust filtration and collection system by an induced draft fan. The temperature of the material in the baghouse is controlled with a temperature indicator and controller TIC that is linked through the plant control system to the tempering air inlet damper valve.

1.3 Scope

The scope of the Hazop was the first stage of the capacity expansion being the second thermal treatment plant, TTP2. The basis of the Hazop was the P&ID [1] for TTP2 (by Regain Services Pty Ltd). The scope of the Hazop included:

- Feed via conveyor and elevator to TTP2;
- TTP2 Main Gas and Combustion Air;
- TTP2 Kiln and Reactor including induced draft fan; and
- TTP2 treated material to stockpile and interface with the existing TTP.

Attachment 1 presents the Hazop node list, which describes in detail the Hazop basis for each system examined.

Other than the interface between the two plants and consideration of isolation of the plants separately, examination of the existing TTP was excluded from the scope of this Hazop. The existing TTP was the subject of a separate previous Hazop.

1.4 Objectives

The objectives of the Hazop were to:

- identify potential hazards associated with the proposed design; and
- identify potential operability issues that may result in other risk issues, including the potential to lead to process safety hazards.
- make recommendations to improve the design and/or operability of the plant, and to minimise the risk to personnel, assets and the environment to as low as reasonably practicable (ALARP).

2 STUDY TEAM

The Hazop was conducted on the 28 - 29 November 2019 at the Regain offices in Port Melbourne. Table 2.1 presents the study team attendance record. Attachment 2 provides a copy of the signed attendance sheet.

Table 2.1	Study Team	Attendance	Record
-----------	------------	------------	--------

Name	Title	Company
Michelle Woolnough	Combustion Engineer	Intelligent Energy Services
Andrew Dinning	Mechanical Engineer	Dinning Engineering
Andrew Bongetti	Electrical Engineer	ElecEng Consulting
Peter Laing	Electrical Engineer	Electrique
Roy Elliott	Operations Manager	Regain
Bernie Cooper	Director	Regain
John Cooper	Operations Support	Regain
Matthew Wallace	Facilitator	Bureau Veritas

3 WORKSHOP DELIVERY

3.1 Hazop Methodology

Effective risk management requires a systematic approach to identify hazards and eliminate or minimise the risks associated with these hazards. Hazop is a systematic means of hazard identification and assessment to verify a process design. A Hazop study is generally conducted during the conceptual and detailed design phases of projects. It is also a technique used on existing plant facilities to improve the safety and operability of the plant.

The Hazop followed the approach outlined in Figure 3.1. The Hazop nodes were determined by BV prior to the Hazop workshop during a review of the Piping and Instrumentation Diagram (PID) – Regain drawing number 246TD002 Revision H [1]. Additional nodes were identified during the workshop as required. Each node was assessed in detail by systematically considering deviations from normal operating conditions to identify hazard and operability issues. Causes, consequences, safeguards and any actions/recommendations were identified and recorded for each deviation.

The deviations used for the nodes are listed in Table 3.1. The nodes are summarised in Attachment 1.

Document: 246R005

Deviation	Guideword	Parameter
Low / No Flow	Low	Flow
High Flow	High	Flow
Reverse Flow	Reverse	Flow
"As well as" Flow	Additional	Flow
Too Early / Too Late	Early	Timing
High Level	High	Level
Low Level	Low	Level
High Pressure	High	Pressure
Low Pressure	Low	Pressure
High Temperature	High	Temperature
Low Temperature	Low	Temperature
Impurities / Composition (concentration)	Other than	Composition
Instrumentation / Control	Suitability	Control
Plant Items	Operability	Operability / Maintainability

Table 3.1 Hazop Node Deviations Used in the Workshop

4 FINDINGS AND RECOMMENDATIONS

The Hazop proceedings were documented using the process hazards analysis (PHA) software PHA Pro [2] and the Hazop worksheets were projected onto a screen for the workshop team to view and agree. A complete record of the HAZOP minutes is included in Attachment 3.

There were 67 recommendations developed and agreed during the Hazop Study. A detailed listing of the Hazop recommendations (including Hazop minute references) is included in Attachment 4. Key items identified included:

- Opportunities to reduce the likelihood of the occurrence of geopolymerisation in the feed bin (Attachment 4, recommendations 3-8);
- The potential for an emergency shutdown situation that requires provision of a high level switch in the reactor feed chute (recommendation 29);
- Safety-in-design sufficiently addresses the loss of reactor water scenario (recommendation 36);
- Assess requirement and location for a pressure transmitter in reactor exhaust line to the kiln for the purpose of controlling static pressure in the kiln (recommendation 41); and
- Verification that the reactor "Always open flammable gas vent" is sized sufficiently to achieve required suction pressures (recommendation 60).

Responsibility for actioning of recommendations is to be assigned and confirmation of action close-out will be managed by the relevant Regain Project Manager.

All of the recommendations will be implemented. The program for implementation of the recommendations is included in Attachment 4 and it shows:

- 26 recommendations implemented prior to completion on design scheduled at end February, 2020;
- 23 recommendations implemented in the plant control system scheduled for completion during March, 2020;
- 12 recommendations implemented during construction scheduled for completion in April, 2020;
- Three recommendations implemented during commissioning which is scheduled for completion by end May, 2020; and
- Three recommendations implemented within three months of completion of commissioning.

5 **REFERENCES**

- (1) 'Tomago Aluminium SPL Processing Facility Thermal Treatment Plant No. 2 P&ID', Regain Services Pty Ltd, 246TD002, Revision H, 26 November 2019
- [2] 'PHA Pro Software', Dyadem, Version 8.
- [3] NSW Government Department of Planning, Industry and Environment Hazardous Industry Planning Advisory Paper No 8 HAZOP Guidelines

Document: 246R005

ATTACHMENTS

Document: 246R005

Attachment 1 Summary of Nodes

Nodes	Design Conditions/Parameters	Drawing No.		
1. TTP2 Feed	Feed via conveyor to TTP2. Design flowrate 4-7 tph ambient conditions Feed size nominal less than 10mm particle size. Feed bin, TTP2 feede	246TD002 ,		
2. TTP2 Main Gas and Combustion Air Natural gas supply and combustion air to TTP2. Natural gas regulated down 246TD00 from 100kPa to 10kPa for feed to burner, modulated through TIC Discharge pressure from combustion air fan, downstream of damper 1.5 kPa Difference between this system and existing Tomago (120 plant) is removal of excess air control valve and modulation of gas via TIC (combustion air flow constant)				
3. TTP2 Kiln and Reactor including induced draft fan	TTP2 Kiln and Reactor. Crushed product enters kiln via kiln feed chute from the feed elevator. Kiln operates at 600 degC which removes cyanide transferred to reactor via kiln discharge chute. Kiln residence time of 2 minutes.	n246TD002 ,, 0		
	Reactor operating conditions - flowrate of 4-7 tph. Addition of water, mixin via agitator - produces steam, hydrogen and methane which is extracted b the reactor exhaust fan and passed back through the kiln. Operates under slight negative pressure via reactor exhaust fan.	g y a		
	Induced draft fan collects exhaust gases and dust. Incorporates dus collector baghouse and cooling air inlet damper.	st		
4. TTP2 treated material to stockpile	al to stockpileThermally treated material to stockpile246TD002Three chain conveyors in series. The second conveyor is where the 120 and 246 systems come together. Downstream combined capacity is 10 tph.246TD002			

Document: 246R005

Attachment 2 Study Team Attendance Sheet

Document: 246R005

Name Position Organisation Signature Michelle Woolnough Consultant Engineer Inkligent Eregy Gensee Multiple Multiple Multiple Gensee Multiple Multiple Gensee Gensee Multiple Gensee Multiple Gensee Gensee Multiple Gensee Gensee Multiple Gensee	Workshop Attendance SheetWorkshop:Regain Tomago Stage 2 Thermal Treatment Plant HAZOPDate:28 th - 29 th November 2019Location:Regain, Port Melbourne								
Michele Woohnogh Grischant Engineer Ereggisering MUL Andrew Dinning Methanial Engineer Dinning Erginering MUL Anonew Donkerth Electrical Engineer Electrice II Peter Laing Electrical Engineer Electrice II Roy ELLPOTH OIELATEONS MANAGER LECATEN LILLET BRAME CONFIR DIRE QUE PECON John Coopo Operation support PECON	Name	Position	Organisation	Signature					
ANDREN DONGETTI ELEGATICAL ENGINEER ELEGAGEGINUTIX Diagetti Peter Laing Evenneal Engineer Electrique // /////////////////////////////////	Andrew Dinning	Mechanial Engineer	Dinning Enginering	All					
Rever Laing Walter Light Light Will Reverse Light Will Have Light Will Have Light Will Have Light North Light Dink and Reverse Reverse Start Sta	ANDREW LONGETTI	ELEGANCEL ENGINEER	ELECTRIQ-E	K A Lagetti					
Rot coupril pinzan pinzan picon picon John coope operation support picon	Peter Laing	OVERATIONS MANAGE	or REGAIN	llut					
John Cooperation support fraction of the support fract	BERME COUPER	PINEQUL	RECAN	At -					
	John coope	operation support	Treacio	0					
				in the second					
			1200						

Document: 246R005

Attachment 3 Hazop Worksheets

Node: 1. TTP2 Feed

Deviation	Causes	Consequences	Safeguards	Recommendations	General Comments
1. Low / No Flow	1. Empty bin	1. Conveyors run empty, waste gas and	1. Feed bin LT	1. Configure a low level alarm off the feed bin LT	
		water overflow from reactor	2. Feed bin LSL	 Configure feed bin LSL to interlock with downstream plant to allow time for transfer and processing of material in train 	
	 Blockage (bridging in bin; solidification) 	 Conveyors run empty, waste gas and water overflow from reactor 	1. Feed bin LT	3. Configure a high level alarm off the feed bin LT	Solidification of material occurs due to geopolymerisation in the feed bin
		 Potential to overfill the feed bin leading to jamming of crushed product transfer conveyor 	 Upstream LSH (mounted on feed bin but part of upstream system) 	 Configure feed bin LSH to interlock with the upstream plant (sequence stop and run-out) 	
		 Safety impact to operators required to clear the blockage (involves cutting the bin, use of a jack- 	 First and second cut pre-blend 	 Further investigate options to reduce the likelihood of geopolymerisation in the feed bin (e.g. forward/reverse feeder) 	
		hammer, exposure to stored energy /	4. Feed bin vibration	6. Develop process sequencing to purge feed bin	
		enguirment risk, toxic dust exposure)		 Install temperature monitoring in the feed bin to detect geopolymerisation. 	-
				8. Provide a low flow switch on TTP2 feeder.	
	3. Conveyor breakdown	 Conveyors run empty, waste gas and water overflow from reactor 	1. Conveyor underspeed switch		
		 Potential to overfill the feed bin leading to jamming of crushed product transfer conveyor 	2. Drive fault alarms		
		 Safety impact to operators required to clear the blockage (involves cutting the bin, use of a jack- hammer, exposure to stored energy / engulfment risk, toxic dust exposure) 			
	4. Bucket elevator breakdown	 Build-up of material at boot leading to overload of the elevator 	1. Elevator underspeed switch	 Ensure that the underspeed software performs self- check on start-up or stop 	
			2. Elevator Boot LSH	10. Develop a PM for all level switches	
2. High Flow	1. Belt overspeed	1. Downstream conveyor or bucket elevator blockage	1. Belt speed set-point limiting		
		2. Failure to destroy cyanide requiring	2. Batch testing of cyanide levels		
		reprocessing	 Conveyor overload protection (shear pin for VSD; circuit breaker for DOL) 		

Document: 246R005

Node: 1. TTP2 Feed

Deviation	Causes	Consequences	Safeguards	Recommendations	General Comments
			4. Elevator Boot LSH		
3. Reverse Flow	1. Manual intervention on VSD only	1. Feeder in reverse resulting in emptying feed bin on to floor, loss of	1. Unable to run in reverse in auto- mode	8. Provide a low flow switch on TTP2 feeder.	
		production	 Conveyor overload protection (shear pin for VSD; circuit breaker for DOL) 		
4. "As well as" Flow	1. Sodium ring in kiln	1. Additional material in bucket elevator leading to overload	 Conveyor overload protection (circuit breaker for DOL) 	11. Update P&ID 246TD002 to correctly indicate the destination of the drop-out chute from the kiln to the TTP2 feed transfer conveyor and label accordingly	
		Potential to melt the bucket elevator belt	2. Elevator Boot LSH	 Provide a thermocouple at the feed end of the kiln and alarm on high temperature 	
			 Direct drop-out chute to upstream point (allow sufficient cooling) 	 Ensure DOL circuit breakers are provided with remote reset capability 	
			4. Kiln scraper		
5. Too Early / Too Late	1. Feed to kiln before kiln has reached 1. Out of spec product		1. Process sequence control		
	temperature		2. Batch testing of product		
			3. Dilution of batches		
6. High Level	1. Kiln feed chute blockage	1. Build-up of material in kiln feed chute	1. Feed chute LSH		
		leading to elevator overload	 Conveyor overload protection (circuit breaker for DOL) 		
			3. Elevator Boot LSH		
7. Low Level	1. No new issues				
8. High Pressure	1. No issues				
9. Low Pressure	1. No issues				
10. High Temperature	1. Drop-out chute return to transfe conveyor	r1. Potential operator exposure to hot material and surfaces		 Provide two high level switches in the kiln drop-out chute to detect blockages (one below and one at top) 	
11. Low Temperature	1. No issues				
12. Impurities / Composition	n1. Oversize material	1. Leads to operability issues with kiln	1. Upstream screening	15. Review technology for upstream screening of	
(concentration)		and material handling and out of spec product	2. Batch testing of product	material	
	2. Entrained metal / other debris	1. Leads to operability issues with kiln	1. Upstream screening		
		and material handling and out of	2. Batch testing of product		

Node: 1. TTP2 Feed

Deviation	Causes	Consequences	Safeguards	Recommendations	General Comments
		spec product			
13. Instrumentation / Control	1. No new issues				
14. Plant Items	1. Plant sirens	1. Potential for confusion / inability to		16. Provide a siren for TTP2	
		identify specific plant area		17. Review sirens in use and identify means to differentiate between plant and equipment	

Node: 2. TTP2 Main Gas and Combustion Air

Deviation	Causes	Consequences	Safeguards	Recommendations	General Comments
1. Low / No Flow	1. Main gas line blockage	 Loss of flame or insufficient he input to kiln or loss of efficiency 	eat 1. Batch testing	 Review the functionality of the low temperature alarm off the kiln temperature transmitter 	
			2. BMS (loss of flame trip)	 Review the improvement reports over the last five years to identify pertinent requirements for the new TTP2 	
			3. Main gas PSL	 Review TTP1 sequencing logic to identify improvements to sequencing functionality of TTP2 	
			4. Kiln TT	24. Ensure BMS reset is accessible outside the panel	
	 Blocked main gas filter Loss of flame or insufficient heat input to kiln or loss of efficiency 	eat 1. Batch testing			
		2. BMS (loss of flame trip)			
			3. Main gas PSL		
			4. Kiln TT		
		5. Filter Maintenance Regime			
	 Main gas regulator failure Loss of flame or insufficient he input to kiln or loss of efficiency 	1. Loss of flame or insufficient he	eat 1. Batch testing		
		2. BMS (loss of flame trip)			
		3. Main gas PSL			
			4. Kiln TT		
	4. Gas control valve failure	1. Loss of flame or insufficient he	eat 1. Batch testing		
		input to kiln or loss of efficiency	2. BMS (loss of flame trip)		
	5. OPSO trip	1. Loss of flame or insufficient he	eat 1. BMS (loss of flame trip)		
	input to kiln or loss of efficiency	2. Batch testing			
			3. Main gas PSL		

Node: 2. TTP2 Main Gas and Combustion Air

Deviation	Causes	Consequences	Safeguards	Recommendations	General Comments
	6. Loss of supply	1. Loss of flame or insufficient heat	1. Main gas PSL		
		input to kiln or loss of efficiency	2. Batch testing		
			3. BMS (loss of flame trip)		
	7. Failure of pilot regulator	 Loss of pilot gas, inability to start or relight 	1. BMS (loss of flame trip)	 Improve fault finding mechanism for pressure measurement points 	
	8. Failure of main gas SOVs	1. Loss of flame or insufficient heat	1. Batch testing		
		input to kiln or loss of efficiency	2. BMS (loss of flame trip and tightness testor)		
	9. Failure of pilot gas SOVs	1. Inability to light burner	1. BMS (failure to ignite pilot)		
	10. Main gas isolation valve closed	 Loss of flame or insufficient heat input to kiln or loss of efficiency 	1. BMS (loss of flame trip and tightness tester)		
			2. BMS (failure to ignite pilot)		
			3. Batch testing		
	11. Pilot gas isolation valve closed	1. Inability to light burner	1. BMS (failure to ignite pilot)		
	12. Combustion air fan failure	1. Loss of flame or insufficient heat input to kiln or loss of efficiency	1. Combustion air PSL		
		2. Potential for excessive CO	2. BMS (loss of flame trip and tightness tester)		
			3. Dust collector fan (maintains negative pressure)		
	13. Blocked combustion air filter	 Low combustion air flow leading to poor combustion and excessive CO 	1. Combustion air filter PSH 2. Combustion air PSL		
			 Dust collector fan (maintains negative pressure) 		
	14. Combustion air damper failure	 Loss of flame or insufficient heat input to kiln or loss of efficiency 	1. BMS (loss of flame trip and tightness tester)	22. Confirm dilution air flow requirements for the burner	
		2. Potential for excessive CO	 Damper Position Switch Dust collector fan (maintains negative pressure) 	 Confirm that the combustion air damper position is exercised via the position switches during the purge sequence 	
2. High Flow	1. Main gas regulator failure	1. Low air/fuel ratio - inefficiency of burner	1. OPSO		
		2. High CO - explosive risk	2. Dust collector fan (maintains		

Node: 2. TTP2 Main Gas and Combustion Air

Deviation	Causes	Consequences	Safeguards	Recommendations	General Comments
			negative pressure)	_	
		3. Flame failure	3. BMS (loss of flame trip)		
		 Overtemperature - regulator reporting requirement if above 8 degC 	rry4. Overtemperature protection (kiln) 00		
		5. Dust collector filter bag damage	5. Overtemperature protection (dust collector)	t	
		6. Downstream equipment exposed high pressure	to 6. Cold air inlet damper		
	2. Gas control valve stuck open reporting requirement if above deqC		ory 1. Overtemperature protection (kiln) 00		
		2. Dust collector filter bag damage	 Overtemperature protection (dust collector) 	t	
			 Dust collector fan (maintains negative pressure) 		
			4. Cold air inlet damper		
	3. Pilot regulator failure	1. Pilot will not light due to excessi	ve 1. BMS (fail to ignite)		
		gas	2. BMS purge		
	4. Combustion air damper stuck open	1. Failure to ignite pilot	1. BMS (fail to ignite)		
	(during ignition)		2. BMS purge		
3. Reverse Flow	1. No issues				
4. "As well as" Flow	1. No issues				
5. Too Early / Too Late	1. Industrial fuel hazards	1. Kiln explosion	1. Designed and certified to AS1375	5	AS1375
			and AS3814 (Industrial fuel fired appliance standards)		AS3814
6. High Level	1. N/A				
7. Low Level	1. N/A				
8. High Pressure	1. No new issues				
9. Low Pressure	1. No new issues				
10. High Temperature	1. High ambient conditions	1. High temperature combustion	air 1. Air conditioning on MCCs		

Node: 2. TTP2 Main Gas and Combustion Air

Deviation	Causes	Consequences	Safeguards	Recommendations	General Comments
		impact on density - not expected to cause any issues given method for air fuel ratio control planned for this kiln			
		2. Shortening of life-span of electrical/electronic equipment	 Selection of field equipment with high ambient temperature ratings 		
11. Low Temperature	1. No issues				
12. Impurities / Composition (concentration)	1. Rainwater and airborne dust	1. Conductive impurities causing failure of instrumentation on the BMS	1. Location of instruments in MCC	 Provide signage to warn against use of water hoses in vicinity of TTP2 	
			 Selection of field equipment with high IP ratings 	26. Review requirements and means for protection of TTP2 gas train from rain	
			3. Fused terminals on field wiring		
	2. Rainwater entrained in combu air	Istion 1. Low combustion air flow 2. Internal corrosion		26. Review requirements and means for protection of TTP2 gas train from rain	
13. Instrumentation / Control	1. 240V AC field instrum solenoids and actuators	ents, 1. Electrocution of maintenance personnel	1. Electrical schematics		
	2. HV on ignition circuits	1. Electrocution of maintenance personnel	1. Electrical schematics	27. Determine HV and 240 VAC signage requirements	
	3. Main gas flow meter	1. Local indication		28. Ensure flow meter on main gas line is an FIT	
14. Plant Items	1. No new issues				

Deviation	Causes	Consequences	Safeguards	Recommendations	General Comments
1. Low / No Flow	1. Failure of material delivery system	 Generation of slurry in the reactor leading spill of material in to bunded area 	1. Upstream material handling interlocks with reactor water supply		
	2. Blockage in reactor feed chute	 Generation of slurry in the reactor leading spill of material in to bunded area 		 Provide high level switch in the reactor feed chute (Note: this is potentially an emergency shutdown situation) 	
		 Overfill kiln and spill of material outside system - exposure of personnel to hot material, dusty, 			

Deviation	Causes	Consequences	Safeguards	Recommendations	General Comments
		chemically reactive			
	 Blockage in reactor discharge chute 	1. Overfill reactor leading to back-up of 1. Vibrati material in the reactor feed chute and potential kiln overfill and spill of material outside system - exposure of	ng motor	 Provide high level switch in reactor discharge chute (Note: this is potentially an emergency shutdown situation) 	
		personnel to hot material, dusty, chemically reactive	or L I	 Configure process shutdown on high level in reactor (LT P246J150) (Note: this is potentially an emergency shutdown situation) 	
				 Immediately stop the Burner on detection of a blockage in the reactor discharge chute 	
4. Water contro	4. Water control valve failure (closed)	 Reactor overheats leading to very hot 1. Water material and very hot material handling equipment (to stockpile) - personnel safety risk, plant damage, process failure 	FT	33. Show reactor water control valve on the P&ID	
	 2. Unable to flash off volatile gases or 2. Readegas, non degassed material sent to stockpile 5. Water SV closed 1. Reactor overheats leading to very hot 1. Readerial and very hot material handling equipment (to stockpile) - personnel safety risk, plant damage, process failure 	 Unable to flash off volatile gases or 2. Reactor TT degas, non degassed material sent to stockpile 		 Configure process shutdown on high reactor temperature off reactor TT 	
				 Configure process shutdown on low reactor water flow off reactor water FT 	
				 Conduct dedicated risk assessment on the loss of reactor water scenario to ensure sufficient safety in design 	
		 Reactor overheats leading to very hot 1. Reactor material and very hot material handling equipment (to stockpile) - personnel safety risk, plant damage, process failure 	or TT	33. Show reactor water control valve on the P&ID	
		 Unable to flash off volatile gases or 2. Water degas, non degassed material sent 	FT	 Configure process shutdown on high reactor temperature off reactor TT 	
		to stockpile		 Configure process shutdown on low reactor water flow off reactor water FT 	
				 Conduct dedicated risk assessment on the loss of reactor water scenario to ensure sufficient safety in design 	
	6. Blocked reactor water nozzle	 Unable to flash off volatile gases or 1. Water degas, non degassed material sent to stockpile 	FT	33. Show reactor water control valve on the P&ID	

Deviation	Causes	Consequences	Safeguards	Recommendations	General Comments
		2. Reactor overheats leading to very hot material and very hot material	2. Reactor TT	34. Configure process shutdown on high reactor temperature off reactor TT	
		handling equipment (to stockpile) - personnel safety risk, plant damage,		35. Configure process shutdown on low reactor water flow off reactor water FT	
		process failure		36. Conduct dedicated risk assessment on the loss of reactor water scenario to ensure sufficient safety in design	
	 Loss of water supply (pressupply pressupply pailure) 	ure 1. Unable to flash off volatile gases or degas, non degassed material sent to stockpile	1. Water FT	33. Show reactor water control valve on the P&ID	
		 Reactor overheats leading to very hot material and very hot material 	2. Reactor TT	 Configure process shutdown on high reactor temperature off reactor TT 	
		handling equipment (to stockpile) - personnel safety risk, plant damage,	3. Revert to mains supply on pressure 35 pump failure 36	35. Configure process shutdown on low reactor water flow off reactor water FT	
				36. Conduct dedicated risk assessment on the loss of reactor water scenario to ensure sufficient safety in design	
	8. Reactor exhaust fan failure	1. Reactor gas and steam aspirates from the reactor vent, personnel safety risk	 Exhaust fan VSD power monitoring for low power 	 Interlock reactor exhaust fan run/fault status with process shutdown 	
				 Conduct hazardous area classification of reactor and associated systems e.g. vent 	
				 Review reactor vent discharge location with respect to personnel access points around and above the reactor 	
	9. Reactor exhaust pipe blockage	 Reactor gas and steam aspirates from the reactor vent, personnel safety risk 	 Exhaust fan VSD power monitoring for low power 	40. Monitor reactor exhaust fan flow via exhaust fan power monitoring and implement alarm on low fan power	
	10. Blocked filter bags	 Low flow through kiln leading to pressurisation of the kiln and dust and products of combustion leaking from kiln 	1. Baghouse pulsing with compressed air	 Configure high alarm off baghouse differential pressure monitoring. 	
		2. Dust flow from baghouse to reactor inhibited	2. Differential pressure monitoring across bags (dPT P246H150)	 Configure high alarm off kiln exhaust pressure monitoring. 	
			 Kiln exhaust pressure monitoring (PIT P246G130) 		

Deviation	Causes	Consequences	Safeguards	Recommendations	General Comments
			4. Dust collector temperature monitoring		
	 ID fan failure including vee-belt slippage or failure 	 Low flow through kiln leading to pressurisation of the kiln and dust and products of combustion leaking from kiln 	 ID fan motor interlock with BMS and process plant 		
		 Dust flow from baghouse to reactor inhibited 			
	12. ID fan incorrect speed	 Low flow through kiln leading to pressurisation of the kiln and dust and products of combustion leaking from kiln 	 ID fan range limit (PLC code) Long fan acceleration and deceleration time on fan motor VSD because of effect of VSD current on current sensing relay 		
	13. Ducting leak	 Low flow through kiln leading to pressurisation of the kiln and dust and products of combustion leaking from kiln 	1. Kiln exhaust pressure monitoring (PIT P246G130)		
		2. Fugitive emissions from ducting	2. Ducting PM		
	14. Cooling air damper fully open	 Low flow through kiln leading to pressurisation of the kiln and dust and products of combustion leaking from kiln 	 Cooling Air Damper position transmitter Kiln exhaust pressure monitoring (PIT P246G130) 	 Implement damper proving check for the TTP2 cooling air damper during pre-start. 	
	15. Cooling air damper fully closed	 Low flow of cooling air leading to high dust collector temperature leading to bag damage and shutdown 	1. Cooling Air Damper position transmitter	 Implement damper proving check for the TTP2 cooling air damper during pre-start. 	
		 Low kiln temperature resulting in maximum burner flame (High flow through kiln) 	2. Dust collector temperature monitoring	45. Implement deviation alarm between control signal to cooling air damper and feedback from position transmitter.	
		 After shutdown, flammable gases: are unable to ventilate through high point 	3. Kiln exhaust pressure monitoring (PIT P246G130)	46. Provide mechanical stop to prevent cooling air damper fully closing47. Configure high alarm off dust collector temperature transmitter	
				 Configure low alarm off kiln exhaust pressure monitoring 	
	16. Compressed air to baghouse SOV	1. Blocked dust bags	1. Compressed air supply PSL (plant	49. Show compressed air to baghouse, cooling air	

Deviation	Causes	Consequences	Safeguards	Recommendations	General Comments
	failure	2. Cooling air damper won't operate	services P&ID)	damper and opacity meter on P&ID	
	17. Dust material handling equipmer failure	t1. Build-up of material in baghouse hopper (leading to blockage ir baghouse)	 Baghouse hopper LSH Equipment SSLs (Underspeed alarms) 	50. Ensure baghouse hopper LSH places kiln in idle- mode	
2. High Flow	1. Material hang-up	1. On shutdown, rapid dumping of material hang-up leads to overloading transfer conveyor	f1. Dust rotary valve	 Confirm reactor capacity is sized to receive full contents of kiln and full baghouse contents in shutdown event. 	
				52. Limit the minimum speed of the transfer conveyor VSD in automatic operation.	
	2. ID fan running too fast	1. Increased product through dust collector leading to overloading dust transfer equipment	t <mark>1. ID fan range limit (PLC code)</mark> t 2. Kiln exhaust pressure monitoring (PIT P246G130)	53. Confirm capacity of existing dust material handling equipment	
	3. Reactor water CV fully open	Creation of slurry inside reactor and continual overflow through outlet Discharge transfer conveyor unable to handle slurry	1. Reactor water FT	54. Configure deviation alarm to detect high flow of reactor water (via FT)	
3. Reverse Flow	1. Steam ingress to dust transfer line	1. Creates sticky product leading to blockages	1. Reactor design - location of dust transfer inlet	t55. Consider rotary valve between reactor and dust transfer conveyor	
4. "As well as" Flow	1. Burner flame out	 Reactor exhaust feed to kiln during flame out leading to uncombusted gases aspirating through kiln exhaust line 	1. Process design - reactor exhaus d diluted to a level such that the t hazardous area is of negligible exten (IEC60079)	t58. Verify reactor exhaust gases dilution target achieves a hazardous area of negligible extent t	
			2. Reactor "Always Open Flammable Gas Vent"	59. Implement an interlock between the BMS run signal and the reactor exhaust fan motor. If BMS indicates burner not running, then reactor exhaust fan must not run.	
				 Verify reactor "Always open flammable gas vent" is sized sufficiently to achieve required suction 	
5. Too Early / Too Late	1. Reactor water starting too earl during sequence start	y1. Loss of water out of reactor (too early)	01. Reactor temperature transmitter	 Configure process interlock to open reactor water CV on reaching reactor temperature set-point (to indicate product in reactor). 	
	2. Reactor water starting too lat during sequence start	e1. Reactor too hot and impact or degassing (too late)	1. Reactor temperature transmitter	57. Install reactor feed chute TT and investigate using the reactor feed chute TT to control water start and stop.	

Deviation	Causes	Consequences	Safeguards	Recommendations	General Comments
6. High Level	1. No new issues				
7. Low Level	1. No new issues				
8. High Pressure	1. High pressure from reactor exhau fan	ist 1. Positive pressure in kiln leading flammable gas and dust leak from kiln seals 2. Potential impact on combustion	y to age	41. Assess requirement and location for a pressure transmitter in reactor exhaust line to kiln for purpose of controlling static pressure in the kiln	
	3. Deflagration event in the reactor	1. Reactor overpressure leading catastrophic failure / damage of reactor	to 1. Deflagration vents on reactor exhaust the vent	t	
	4. Ignited gas release from reactor	1. Flash fire event leading to poss injuries to operators / personnel the vicinity	ible 1. Hazardous Area Classifcation I in IEC60079 2. Adhoc gas testing		
9. Low Pressure	1. Low pressure compressed a supply	air 1. Unable to clean bags leading blockages	to 1. Compressed air supply PSL (plan services P&ID)	t	
10. High Temperature	1. Production of steam in reactor	1. Personnel exposure to very surfaces	hot 1. Reactor is fully guarded	61. Consider an additional barrier around the top and sides of the reactor	
11. Low Temperature	1. No new issues				
12. Impurities / Composition (concentration)	1. Stack emissions	1. Breaching EPA conditions	1. Opacity meter 2. Dust collection baghouse 3. Stack emissions testing program	-	
	2. Spills to bunded area	1. Contaminated run-off water	1. Stormwater containment system		
	3. Water ingress to compressed a lines	air 1. Damage to equipment and p operation of pneumatics	boor	62. Add an air receiver and automatic drain in compressed air system	
13. Instrumentation / Control	1. No new issues				
14. Plant Items	1. No new issues				

Node: 3. TTP2 Kiln and Reactor including induced draft fan

Node: 4. TTP2 treated material to stockpile

Deviation	Causes	Consequences	Safeguards	Recommendations	General Comments
1. Low / No Flow	1. No new issues				

Node: 4. TTP2 treated material to stockpile

Deviation	Causes	Consequences	Safeguards	Recommendations	General Comments
2. High Flow	1. Rapid lifting of discharge gate	1. High flow out of reactor		63. Ensure reactor rotor speed is controlled for discharge	
3. Reverse Flow	1. No issues				
4. "As well as" Flow	1. Feed from 120 system	 Normal operations - system designed for combined capacity 			
5. Too Early / Too Late	1. 120 plant not running	1. Overload discharge conveyor		64. Provide interlock for the 120 system running before starting 246 system	
6. High Level	1. Failure to clear stockpile	 High stockpile level leading to jammed conveyor 120M 	 High level switch on 120M (sequence stop) 		
7. Low Level	1. No new issues				
8. High Pressure	1. No issues				
9. Low Pressure	1. No issues				
10. High Temperature	1. No issues				
11. Low Temperature	1. No issues				
12. Impurities / Composition (concentration)	1. Degassing of product ex-reactor	 Flammable gas emissions from product on discharge transfer conveyors 	 Hazardous Area Classification (IEC60079) Periodic gas monitoring along conveyors 	66. Provide 120K with full-sized always open vent similar to 258S	
	2. Wet material growth on conveyor chain	1. Reduces capacity of conveyor system	1. Periodic conveyor maintenance		
13. Instrumentation / Control	1. No new issues				
14. Plant Items	1. Isolation of 120 or 246 system	 Inability to run non isolated plant due to shared conveyor 		65. Review isolation requirements for the scenario of isolating one kiln whilst continuing to run the other kiln	
	2. Isolation of natural gas to 120 or 246	 Inability to run non isolated plant due to common natural gas supply 		67. Update P&ID 116TD161 to incorporate a bleed lines downstream of the respective isolation valves	

Document: 246R005

Attachment 4 Recommendations

Recommendations	Responsibility	Place(s) Used	Implementation Program
1. Configure a low level alarm off the feed bin LT	AD	Causes: 1.1.1	See Note A
2. Configure feed bin LSL to interlock with downstream plant to allow time for transfer and processing of material in train.	AD	Causes: 1.1.1	See Note B
3. Configure a high level alarm off the feed bin LT	AD	Causes: 1.1.2	See Note B
 Configure feed bin LSH to interlock with the upstream plant (sequence stop and run-out) 	AD	Causes: 1.1.2	See Note B
Further investigate options to reduce the likelihood of geopolymerisation in the feed bin (e.g. forward/reverse feeder)	JC	Causes: 1.1.2	See Note E
6. Develop process sequencing to purge feed bin	AD	Causes: 1.1.2	See Note B
 Install temperature monitoring in the feed bin to detect geopolymerisation. 	AD	Causes: 1.1.2	See Note C
8. Provide a low flow switch on TTP2 feeder.	AD	Causes: 1.1.2, 1.3.1	See Note C
9. Ensure that the underspeed software performs self-check on start-up or stop	AD	Causes: 1.1.4	See Note D
10. Develop a PM for all level switches	RE	Causes: 1.1.4	See Note E
11. Update P&ID 246TD002 to correctly indicate the destination of the drop-out chute from the kiln to the TTP2 feed transfer conveyor and label accordingly	AD	Causes: 1.4.1	See Note A
12. Provide a thermocouple at the feed end of the kiln and alarm on high temperature	AD	Causes: 1.4.1	See Note C
13. Ensure DOL circuit breakers are provided with remote reset capability	PL	Causes: 1.4.1	See Note A
14. Provide two high level switches in the kiln drop-out chute to detect	AD	Causes: 1.10.1	See Note C

Capacity Increase at Tomago Spent Potlining Facility Hazard and Operability Study (HAZOP) Report 40,000 tpa Capacity Thermal Treatment Plant

Responsibility Recommendations Place(s) Used Implementation Program blockages (one below and one at top) 15. Review technology for upstream screening of material JC Causes: 1.12.1 See Note E 16. Provide a siren for TTP2 PL Causes: 1.14.1 See Note C PL 17. Review sirens in use and identify means to differentiate between plant Causes: 1.14.1 See Note A and equipment AD 18. Review the functionality of the low temperature alarm off the kiln Causes: 2.1.1 See Note A temperature transmitter 19. Review the improvement reports over the last five years to identify AB Causes: 2.1.1 See Note A pertinent requirements for the new TTP2 20. Review TTP1 sequencing logic to identify improvements to sequencing AB Causes: 2.1.1 See Note B functionality of TTP2 21. Improve fault finding mechanism for pressure measurement points MW Causes: 2.1.7 See Note C 22. Confirm dilution air flow requirements for the burner MW Causes: 2.1.14 See Note A 23. Confirm that the combustion air damper position is exercised via the MW Causes: 2.1.14 See Note D position switches during the purge sequence 24. Ensure BMS reset is accessible outside the panel PL See Note A Causes: 2.1.1 25. Provide signage to warn against use of water hoses in vicinity of TTP2 RE Causes: 2.12.1 See Note C 26. Review requirements and means for protection of TTP2 gas train from JC Causes: 2.12.1. See Note A 2.12.2 rain 27. Determine HV and 240 VAC signage requirements PL Causes: 2.13.2 See Note A 28. Ensure flow meter on main gas line is an FIT AD Causes: 2.13.3 See Note A 29. Provide high level switch in the reactor feed chute (Note: this is See Note C AD Causes: 3.1.2 potentially an emergency shutdown situation)

Recommendations	Responsibility	Place(s) Used	Implementation Program
30. Provide high level switch in reactor discharge chute (Note: this is potentially an emergency shutdown situation)	AD	Causes: 3.1.3	See Note C
31. Configure process shutdown on high level in reactor (LT P246J150) (Note: this is potentially an emergency shutdown situation)	AD	Causes: 3.1.3	See Note B
32. Immediately stop the Burner on detection of a blockage in the reactor discharge chute.	PL	Causes: 3.1.3	See Note A
33. Show reactor water control valve on the P&ID	AD	Causes: 3.1.4, 3.1 3.1.6, 3.1.7	.5,See Note A
34. Configure process shutdown on high reactor temperature off reactor TT	AD	Causes: 3.1.4, 3.1 3.1.6, 3.1.7	.5,See Note B
35. Configure process shutdown on low reactor water flow off reactor water FT	AD	Causes: 3.1.4, 3.1 3.1.6, 3.1.7	.5,See Note B
36. Conduct dedicated risk assessment on the loss of reactor water scenario to ensure sufficient safety in design	PL	Causes: 3.1.4, 3.1 3.1.6, 3.1.7	.5,See Note A
37. Interlock reactor exhaust fan run/fault status with process shutdown	AD	Causes: 3.1.8	See Note B
38. Conduct hazardous area classification of reactor and associated systems e.g. vent	PL	Causes: 3.1.8	See Note A
39. Review reactor vent discharge location with respect to personnel access points around and above the reactor	BC	Causes: 3.1.8	See Note A
40. Monitor reactor exhaust fan flow via exhaust fan power monitoring and implement alarm on low fan power	AD	Causes: 3.1.9	See Note B
41. Assess requirement and location for a pressure transmitter in reactor exhaust line to kiln for purpose of controlling static pressure in the kiln	AD	Causes: 3.8.1	See Note A
42. Configure high alarm off baghouse differential pressure monitoring.	AD	Causes: 3.1.10	See Note B

Capacity Increase at Tomago Spent Potlining Facility Hazard and Operability Study (HAZOP) Report 40,000 tpa Capacity Thermal Treatment Plant

Recommendations	Responsibility	Place(s) Used	Implementation Program
43. Configure high alarm off kiln exhaust pressure monitoring.	AD	Causes: 3.1.10	See Note B
44. Implement damper proving check for the TTP2 cooling air damper during pre-start.	AD	Causes: 3.1.14, 3.1.15	See Note B
45. Implement deviation alarm between control signal to cooling air damper and feedback from position transmitter.	AD	Causes: 3.1.15	See Note B
46. Provide mechanical stop to prevent cooling air damper fully closing	AD	Causes: 3.1.15	See Note C
47. Configure high alarm off dust collector temperature transmitter	AD	Causes: 3.1.15	See Note B
48. Configure low alarm off kiln exhaust pressure monitoring	AD	Causes: 3.1.15	See Note B
49. Show compressed air to baghouse, cooling air damper and opacity meter on P&ID	AD	Causes: 3.1.16	See Note A
50. Ensure baghouse hopper LSH places kiln in idle-mode	AD	Causes: 3.1.17	See Note B
51. Confirm reactor capacity is sized to receive full contents of kiln and full baghouse contents in shutdown event.	JC	Causes: 3.2.1	See Note A
52. Limit the minimum speed of the transfer conveyor VSD in automatic operation.	AD	Causes: 3.2.1	See Note B
53. Confirm capacity of existing dust material handling equipment	AD	Causes: 3.2.2	See Note A
54. Configure deviation alarm to detect high flow of reactor water (via FT)	AD	Causes: 3.2.3	See Note B
55. Consider rotary valve between reactor and dust transfer conveyor	JC	Causes: 3.3.1	See Note A
56. Configure process interlock to open reactor water CV on reaching reactor temperature set-point (to indicate product in reactor).	AD	Causes: 3.5.1	See Note B
57. Install reactor feed chute TT and investigate using the reactor feed chute TT to control water start and stop.	AD	Causes: 3.5.2	See Note C
58. Verify reactor exhaust gases dilution target achieves a hazardous area	MW	Causes: 3.4.1	See Note D

Recommendations Responsibility Place(s) Used **Implementation Program** of negligible extent 59. Implement an interlock between the BMS run signal and the reactor AD Causes: 3.4.1 See Note B exhaust fan motor. If BMS indicates burner not running, then reactor exhaust fan must not run. 60. Verify reactor "Always open flammable gas vent" is sized sufficiently to AD Causes: 3.4.1 See Note A achieve required suction 61. Consider an additional barrier around the top and sides of the reactor See Note A AD Causes: 3.10.1 AD 62. Add an air receiver and automatic drain in compressed air system Causes: 3.12.3 See Note A AD 63. Ensure reactor rotor speed is controlled for discharge Causes: 4.2.1 See Note B 64. Provide interlock for the 120 system running before starting 246 system AD Causes: 4.5.1 See Note B AB 65. Review isolation requirements for the scenario of isolating one kiln Causes: 4.14.1 See Note A whilst continuing to run the other kiln 66. Provide 120K with full-sized always open vent similar to 258S JC Causes: 4.12.1 See Note C 67. Update P&ID 116TD161 to incorporate a bleed lines downstream of the AD Causes: 4.14.2 See Note A respective isolation valves

Notes on Implementation Program:

- A. Prior to completion of design scheduled at end February, 2020.
- B. Incorporate in plant control system scheduled for completion during March, 2020
- C. Installed during construction scheduled for completion by during April, 2020
- D. Performed during commissioning for completion by end May, 2020
- E. Performed within three months of completion of commissioning.

